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An Error and Sensitivity Analysis of the
Atmospheric- and Soil-Correcting
Variants of the NDVI
for the MODIS-EOS
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Abstract—Several soil- and atmospheric-correcting variants
of the normalized difference vegetation index (NDVI) have been
proposed to improve the accuracy in estimating biophysical
plant parameters. In this study, a sensitivity analysis, utilizing
simulated model data, was conducted on the NDVI and variants
by analyzing the atmospheric- and soil-perturbed responses as
a continuous function of leaf area index. Percent relative error
and vegetation equivalent ‘‘noise’’ (VEN) were calculated for
soil and atmospheric influences, separately and combined. The
NDVI variants included the soil-adjusted vegetation index
(SAVI), the atmospherically resistant vegetation index (ARVI),
the soil-adjusted and atmospherically resistant vegetation in-
dex (SARVI), the modified SAVI (MSAVI), and modified
SARVI (MSARVI).

Soil and atmospheric error were of similar magnitudes, but
varied with the vegetation index. All new variants outper-
formed the NDVI. The atmospherically resistant versions min-
imized atmospheric noise, but enhanced soil noise, while the
soil adjusted variants minimized soil noise, but remained sen-
sitive to the atmosphere. The SARVI, which had both a soil and
atmosphere calibration term, performed the best with a rela-
tive error of 10 percent and VEN of +0.33 LAI. By contrast,
the NDVI had a relative error of 20 percent and VEN of +0.97
LAIL

I. INTRODUCTION

THE usefulness of the normalized difference vegetation
index

NDVI = (pnir - pred)/( Pair T pred) (1)

for satellite assessment and monitoring of the Earth’s veg-
etative cover has been demonstrated now for over a de-
cade [1], [2]. The integral and time series analyses of sea-
sonal NDVI data have provided a method of estimating
net primary production over varying biome types, of mon-
itoring phenologic patterns of the earth’s vegetative sur-
face, and of assessing the length of the growing season
and dry-down periods, which are helpful in remote sens-
ing studies of ecosystem structure and function, land cover
classification, and carbon and biogeochemistry cycles of
the earth [3], [4].
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The accuracy and precision of the NDVI is thus crucial
for a large array of Earth Observation System (EOS) stud-
ies requiring knowledge of the state and dynamics of the
Earth’s vegetative cover. The validity of these ‘‘global’’
applications of the NDVI are based on several observa-
tional and simulated studies that have empirically related
the NDVI to plant biophysical parameters, such as leaf
area index (LAI), absorbed photosynthetically active ra-
diation (APAR), percent cover, and biomass [5]-[8]. For
globally based studies, however, we cannot assume that
these regression relationships and statistical features will
remain constant under changing atmospheric conditions
and over spatially variable locations.

Many studies have found the NDVI to be unstable,
varying with soil, sun-view geometry, atmospheric con-
ditions, and the presence of dead material, as well as with
changes within the canopy itself [8]-[11]. As a result,
several studies and developments have sought to improve
upon the NDVI by correcting for soil and atmospheric
sources of variance.

The improved variants to the NDVI equation attempt
to either incorporate a ‘‘soil’’ adjustment factor or a
‘‘blue’’ band for atmospheric normalization. The soil ad-
justed vegetation index (SAVI) introduced a soil calibra-
tion factor L to the NDVI equation to account for first-
order soil-vegetation optical interactions and differential
red and NIR extinction through the canopy {12]:

SAVI = [(pnir = Prea)/(Puic + Prea + D11 + L). (2)

An L value of 0.5 in reflectance space was found to min-
imize soil brightness variations and eliminated the need
for additional calibration for different soils. The basis of
the SAVI in minimizing the soil ‘‘noise’’ inherent in the
NDVI has been corroborated in numerous studies involv-
ing ground, air, satellite, and simulated data sets [13]-
[15].

Several refinements of the SAVI equation have also
been investigated. Baret e al. [16] developed a soil-spe-
cific, transformed SAVI (TSAVI) utilizing SAIL model
simulations. Using ground-based radiometric measure-
ments over corn plots, Bausch [13] tested a step-wise
variable L function in the SAVI but found no significant
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improvement in soil noise reduction, although a greater
dynamic range did occur. Qi et al. [17] developed a mod-
ified SAVI (MSAVI) that utilized an iterative, continuous
L function to optimize soil-adjustment and increase the
dynamic range of the SAVI:

MSAVI = {2p, + 1 = [2pm + 1)?

= 8(pnic — Pra)™}/2. 3)

The atmospherically resistant vegetation index (ARVI),
on the other hand, incorporated the blue band into the
NDVI equation to normalize temporal and spatial varia-
tions in atmospheric aerosol content [18]:

ARVI = (p; — o) pme + 1) @

where
@"H

The ARVI utilizes the difference in the radiance between
the blue channel and the red channel to correct the radi-
ance in the red channel, and thus, reduce atmospheric in-
fluences. This index requires prior corrections for molec-
ular scattering and ozone absorption p*. Myneni and Asrar
[19], in a sensitivity study with simulated data, found the
ARVI to reduce atmospheric effects and to mimic ground-
based NDVI data.

The NDVI variants (SAVI, MSAVI, and ARVI) either
adjust for soil or atmosphere and do not consider com-
bined interactive effects of soil and atmosphere. The
ARVI only considers atmospheric noise without concern
for soil noise and the SAVI and MSAVI do not consider
atmospheric influences. However, one may integrate the
L function in the SAVI with the blue-band normalization
in the ARVI and derive the soil and atmospherically re-
sistant vegetation index (SARVI) [18], which would cor-
rect for both soil and atmospheric noise, as would an
MSARVIL:

o = pr — (o5 — ).

SARVI = [(pgc = pi)(pme + 0% + D11 + L) (5)
and
MSARVI = {2p% + 1 — [2p%, + 1)

- 8(pm: — p1®S}2. ©

The moderate resolution imaging spectrometer
(MODIS), being developed for EOS, has several charac-
teristics of interest to global vegetation index studies [20],
[21], including an absolute radiometric accuracy of less
than 5 percent (\ < 3 um), improved spectral stability
requirements, narrower spectral bandwidths, and band-to-
band registration requirements of less than 0.2 [FOV, with
0.1 IFOV as a goal (Table I). Improved vegetation sen-
sitivity will also be achieved from an optimal utilization
of the 36 MODIS spectral bands between 0.415 and
14.235 um with spatial resolutions of 250 m (two bands),
500 m (five bands), and 1000 m (29 bands). There is a
near-infrared band (0.841-0.876 um) that avoids the water

TABLE 1
MODIS SENSOR CHARACTERISTICS IN SUPPORT OF THE VEGETATION INDEX
ALGORITHM PrODUCTS

Center Ground Max. Required Bandwidth
Band Wavelength, IFOV Spectral  SNR2 Tolerance
# Ac (nm) A\ (nm) (m) Radiance! (xnm)
1 645 50 250 21.8 128 40
2 858 35 250 24.7 201 4.3
3 469 20 500 35.3 243 28
4 555 20 500 29.0 228 3.3
5 1240 20 500 5.4 74 7.4
6 1620 24.6 500 7.3 275 9.8
7 2130 50 500 1.0 110 12.8

'Watts/meter’/micrometer/steradian.
2Signal-to-noise ratio.
Quantization: 12 b.
Scan width: 2330 X 10 km (track) at 705 km platform altitude +55°
along scan.
Absolute calibration: +5 percent, + 2 percent reflectance.
Spectral Stability: A, and AN stable to <2 nm (visible: desired for NIR).
Band-to-band registration: +0.2 IFOV, with +0.1 IFOV goal.

absorption regions in the NIR and there is a ‘‘blue’’ band
(0.459-0.479 um) for implementation of the atmospher-
ically resistant VI’s (Table I).

In this paper, a sensitivity analysis was performed on
the NDVI and variants (SAVI, MSAVI, ARVI, SARVI,
and MSARVI) using SAIL model simulations [22] over a
range of LAI and soil background conditions. The anal-
ysis included a Lowtran atmospheric simulation {23] over
a range of visibilities, with and without a Rayleigh com-
ponent and ozone absorption. The purpose was to deter-
mine which NDVI variants were most appropriate for
global vegetation studies with the MODIS sensor and to
determine the accuracy or uncertainty with which one may
estimate vegetation ‘‘changes’’ or ‘‘differences’’ utilizing
these indexes.

II. ERROR AND SENSITIVITY ANALYSIS

The sensitivity approach utilized here is based on plot-
ting a perturbed response of the VI as a continuous func-
tion of a vegetation biophysical parameter, such as the
LAI [24]. The perturbation variables included soil bright-
ness/wetness, atmospheric aerosol loadings, and molec-
ular scattering/absorption. The percent relative error was
used as a basis for comparing differences among VI’s, and
is defined as

¢, (percent) = 100 X (VI, — VD/(VI = VL) (7

where VI is the ‘‘true’’ VI value (here the mean VI is
treated as the true VI), VI, is the perturbed VI response
resulting from a change in the soil background and at-
mosphere, and VI is the VI response over bare soil (the
lower boundary condition for the VI dynamic range). The
percent relative error standardizes the unique dynamic
ranges of the VI's. A second measure of VI performance
is the ‘‘vegetation equivalent noise’’:

VEN = (VI, — VI)/6(LAI) 8
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where § (LAI) is the slope, d VI/dLAI, of the VI-LAI
curve at a specific LAI. The VEN measures the uncer-
tainty in estimating a vegetation parameter and carries the
units of that parameter, e.g., LAI [24].

The VI error and sensitivity analyses were applied to

nine cases:

1) the soil noise problem with no atmosphere (total at-
mospheric correction scenario);

2) the atmospheric noise problem with constant (mean)
soil background (no soil variation);

3) the atmospheric noise problem over different soil
backgrounds;

4) the soil noise problem for different atmospheres;

5) the combined or total soil and atmospheric noise;

6) the combined noise with and without a Rayleigh and
ozone correction;

7) instrument noise associated with an absolute radio-
metric uncertainty of + 5 percent;

8) instrument noise associated with a band-to-band
registration (cross- and along-track directions) un-
certainty of + 20 percent and;

9) instrument noise associated with a spectral stability
uncertainty of + 2 nm.

The first case permitted an assessment of the impact of
the total atmospheric (including aerosols) correction on
the noise and uncertainty levels in the VI's. With the sixth
case, we were able to compare partially corrected (Ray-
leigh and ozone) results with uncorrected and total at-
mospherically corrected VI’s. The purpose of the last
three cases was to compare atmospheric and soil noise
with instrument-related uncertainties. The instrument er-
ror would define the lower threshold of VI noise and un-
certainty from which the VI equation could not be further
improved.

III. DATA SET DESCRIPTION

A SAIL model simulation [22] was performed using a
single-layer one-component canopy model with a uniform
leaf angle distribution. The reflectance and transmittance
properties of cedar tree leaves were used with canopy LAI
values from 0 to 3 for a solar zenith angle of 40° and nadir
view. Six soil backgrounds were used representing a rea-
sonable range in soil optical properties, varying from 5 to
35 percent in red reflectances and 10 to 40 percent in the
near-infrared (NIR).

A PC Lowtran atmospheric simulation [23] was con-
ducted with a midlatitude summer, rural aerosol atmos-
phere model with visibilities of 5, 10, 23, 50, and 100
km, with and without a Rayleigh correction,

L(Rayleigh comected) = (Lyy - L(Rayleigh))/ T(Rayleigh) ()

where L, is the measured radiance for any visibility,
L ayteign is the path radiance of the Rayleigh atmosphere,
and Tirqyicigny is the one-way (vertical) transmission
through the Rayleigh atmosphere. In both the SAIL and
Lowtran model simulations, the fine spectral resolution

data (10 nm) were averaged to approximate the MODIS
bandpasses (Table I). '

IV. REsuLTS
A. Total Atmospheric Correction (Soil Noise Only)

Fig. 1 shows the six vegetation index variants plotted
against the LAI, utilizing six soil backgrounds from the
model simulation. There were only soil ‘‘noise’’ pertur-
bations with no atmosphere layer, equivalent to a “‘total
atmospheric correction’’ scenario. A change in the soil
background altered the red and NIR canopy reflectances
and calculated VI's. For any constant level of green veg-
etation, these deviations were treated as ‘‘noise’’ and sub-
Jected to a sensitivity analysis as well as an error analysis.
The atmospherically resistant VI's (ARVI, SARVI, and
MSARVI) were included in these analyses despite the ab-
sence of an atmosphere to normalize. It was of interest to
determine how the blue-band inclusion into the VI’s would
impact on soil noise.

Visually, there were higher soil influences in the NDVI
and minimal soil noise in the soil-adjusting SAVI and
MSAVI. The respective atmospheric resistant versions.of
these three indexes (ARVI, SARVI, and MSARVI) ag-
gravated the soil noise problem. ;

The percent errors, due to soil noise, in the SAVI and
MSAVI were the least at LAI’s from O to 1, with:those of
the SARVI and MSARVI intermediate, and ARVI and
NDVI the highest [Fig. 2(a)]. All indexes exhibited de-
creasing percent error due to soil with increasing LAI. At
LAT’s beyond 1.5, the percent relative error for all VI’s
became similar. The vegetation equivalent noise (VEN)
values were also lowest for the SAVI and MSAVI at lower
LAD’s [Fig. 2(b)], where the uncertainty was within +
0.05 LAI. The SARVI and MSARVI had the lowest VEN
values from LAI 1.5 to 3.0 and all indexes had minimal
noise levels at LAI = 3. The VEN values in the NDVI
and ARVI were much higher and increased with LAI from
0 to 1.5 before decreasing again. The ARVI had the high-
est VEN with the greatest uncertainty (+0.5 LAI) at LAI
= 1.5. At LAI values beyond 1.5, the VI-LAI curve (Fig.
1) started to level off, resulting in higher potentials for
error estimates in LAI. At LAI = 3, soil influences dis-
appear and the VEN levels drop to zero.

B. Atmospheric Noise Component

For the atmospheric sensitivity analysis, we chose a
‘‘mean’’ soil background and only perturbed the VI with
atmospheric variations, namely aerosol contents (visibil-
ities) with the Rayleigh component removed. The six VI's
showed that as atmospheric visibility decreased, the VI
response decreased with greater absolute changes occur-
ring at the higher LAI’s (Fig. 3). The atmospherically re-
sistant VI’s showed lower atmospheric variations than
their nonatmospheric counterparts, with the ARVI result-
ing in the least variation. Thus, inclusion of the blue band
into the VI equation (ARVI, SARVI, and MSARVI) re-
sulted in improved normalization of atmospheric effects.
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Fig. 2. Percent relative error (a) and vegetation equivalent noise (b) due
to soil background as a function of LAI.

The lower error and noise levels of the atmospherically MSAVI, and NDVI had VEN values approaching +1.5

resistant indexes (ARVI, SARVI, and MSARVI) are seen
in Fig. 4. The three self-atmosphere-correcting indexes
had VEN levels below 0.7 LAI units, while the SAVI,

LAI In contrast to the soil case [Fig. 2(b)], all VI's in-
creased in VEN with LAI, whereas the percent relative
error was nearly independent of vegetation amount.
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C. Coupled Atmospheric-Soil Noise varied with the amount of vegetation, but also with the

The atmosphere not only affected the vegetation signal canopy background (Fig. 5). This analysis was similar to
but also the soil background signal. Thus, the error and that presented in Fig. 4(b), but with a dark and bright soil
uncertainty introduced by variable atmospheres, not only  background rather than the mean soil background. At-
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mospheric noise was much more pronounced over cano-
pies with darker soil backgrounds with the NDVI and
ARVI, and less so in the SARVI and MSARVI. Atmos-
pheric noise was nearly independent of soil background
in the case of the SAVI and MSAVI (Fig. 5). Overall, the
least noise resulting from atmospheric aerosols occurred
with the atmospherically resistant variants and under con-
ditions of low LAI’s [Fig. 4(b)], and brighter soil back-
grounds (Fig. 5).

D. Soil Noise with Varying Atmospheres

The interactive effects of soil and atmosphere also cause
“‘soil”” noise to not only vary with vegetation amount, but
also atmospheric conditions (Fig. 6). Thus, the magni-
tude of soil noise in a VI may be positively or negatively
reinforced by atmospheric aerosol contents. In Fig. 6, the
soil noise in the NDVI decreased with higher aerosol
loadings (lower visibilities), in contrast to the SAVI and
MSAVI, which increased in soil noise under more turbid
(aerosol) conditions.

Soil noise in the atmospherically resistant VI’s (ARVI,
SARVI, and MSARVI) was relatively stable across at-
mospheric conditions. The ARVI had the most soil noise,
while the SARVI and MSARVI had the least soil noise.
Under very turbid atmospheric conditions the NDVI had
lower soil noise levels than found in the SAVI and
MSAVI. Apparently, atmospheric turbidities dampened
soil variations, and thus, atmospheric noise counteracted
soil noise effects. Improved atmospheric correction algo-
rithms would consequently enhance soil noise in the
NDVIL

E. Total Noise

Both soil and atmospheric influences were allowed to
simultaneously perturb the VI response, resulting in a
soil-atmosphere (total) error and noise assessment of each
VI as a continuous function of vegetation amount (Fig.
7). This represented the uncertainty in a VI when knowl-
edge of atmospheric and soil optical parameters within an
image are unavailable.

For most of the range of LAI’s the ‘‘soil and atmos-
phere correcting’’ SARVI and MSARVI had the lowest
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percent relative error (~ 15 percent), while the NDVI,
SAVI, and MSAVI had relative errors from 20 to 30 per-
cent. The VEN values showed the NDVI to be least re-
liable in LAI estimation with uncertainties of +2 LAI
units at LAI levels beyond 1.5. By contrast, the SARVI
and MSARVI could predict LAI to within +0.75
throughout the range of LAI values (0-3). The ARVI,
SAVI, and MSAVI were intermediate in behavior with
LAI uncertainties leveling out at +1.2.

Fig. 8 shows the effect of the Rayleigh component on
combined atmospheric-soil (total) noise in all VI's. Over-
all, a Rayleigh and gas absorption correction improves
upon vegetation sensitivity except in the case of the
NDVI, where the gain in vegetation sensitivity is offset
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by a higher increase in soil noise. Rayleigh correction had
little effect on noise levels in the SAVI and MSAVI. The
noise in the atmospherically resistant VI’s, however, im-
proved with Rayleigh correction, particularly in the
ARVI. The MSARVI could not be computed with the
Rayleigh component due to negative values in the square
root term [(6)].

Fig. 9(a) shows total VEN values for each VI, averaged
across the range of LAI’s. The VEN due to soils varied
from +0.06 LAI (SAVI) to +0.27 LAI (ARVI). The
VEN values due to atmosphere, were overall, higher than
those attributed to soils, and were lowest for the ARVI
and SARVI (£0.2 LAI) and highest for the NDVI (+0.65
LAI). The ‘‘total’’ VEN analysis resulted in the SARVI
having the lowest noise (+0.33 LAI) for the range of at-
mospheric and soil conditions analyzed in this study. The
highest noise was encountered with the NDVI (+0.97
LAI). All indexes had noise and error terms that were
nearly additive, i.e., the VEN due to soil plus that due to
atmosphere approximated the total VEN,

For comparison purposes, the VEN due to different in-
strument characteristics are also shown in Fig. 9(a). The
largest source of instrument noise considered here was due
to an absolute radiometric uncertainty of +5 percent in
MODIS bands 1, 2, and 3. This resulted in VEN levels
of +~0.12 LAI, which was of the same order of mag-
nitude as soil noise. The noise resulting from a 20 percent
band-to-band registration error was relatively small
(£ ~0.05 LAI), as was the noise resulting from a spectral
band output change due to a shift in center wavelength of
2 nm (+ ~0.02 LAI). The after-launch spectral-band out-
put change resulting from a 2 nm center wavelength shift
varies from 0.5 percent (bands 1 and 2) to 2 percent (bands
3 and 4) [25]. Further analysis is needed to couple all
sources of error in an end-to-end (sensor to vegetation)
model.

Fig. 9(b) presents the absolute error VI, — Vlin each
VI as a function of atmospheric and soil variations and
instrument characteristics. The absolute error gives an in-
dication of how the VI values themselves may vary as a
result of various perturbances. Thus, a 5 percent radio-
metric uncertainty results in absolute errors of +0.03-
+0.05 VI units. This is in contrast to combined, soil and
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Fig. 9. Comparisons of averaged vegetation equivalent noise (a) and
averaged absolute error (b) among various sources of environmental and
instrument uncertainties.

atmospheric uncertainties from +0.06 (SARVI) to +£0.14
(NDVI and ARVI) VI units.

V. CONCLUSIONS AND DISCUSSION

The goal of this study was to examine the noise and
uncertainty in the NDVI equation and variants to deter-
mine if there is sufficient improvement in the new VI’s to
justify their global use for the EOS-MODIS sensor. The
results of this study suggest that both the atmospheric and
soil sources of uncertainty present in the NDVI can be
markedly improved through the incorporation of soil ad-
justing and atmospheric correcting coefficients. These
coefficients require no further information on soil and/or
atmospheric conditions.

Utilizing calibrated ‘‘at sensor’’ radiances, one may
compute the VI's based on sensor radiances normalized
by incoming exoatmospheric irradiances (‘‘apparent re-
flectances’’) or one may compute the VI’s from partial or
total atmospherically corrected data. Currently, a partial
atmospheric correction for Rayleigh scattering and ozone
absorption is used operationally in the generation of
AVHRR-NDVI global data sets. These atmospheric pro-
cessing scenarios affect the optimal VI equation, such that

1) if there was a total atmospheric correction then there
would mainly be ‘‘soil noise’’ and the SAVI and
MSAVI would be the best equation to use and the
NDVI and ARVI would be the worst;

2) if there was a partial atmospheric correction to re-
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move the Rayleigh and ozone components, then the
best VI's to use would be the SARVI and MSARVI,
with the NDVI and ARVI being the worst; and

3) if there was no atmospheric correction at all, i.e.,
no Rayleigh, ozone, or aerosol correction, then the
SARVI would become slightly worse but still would
have the least overall noise. The NDVI and ARVI
would have the most noise and error.

With a complete, operational correction for atmos-
pheric effects (aerosols and gases) [26], all VI’s could be
computed from ‘‘surface reflectance’’ inputs although,
with atmospheric influences removed, there may no longer
be a need for the atmospherically resistant variants ARVI,
SARVI, and MSARVI. Nevertheless, as it may not be
possible to implement a globally consistent, atmospheric
correction scheme, e.g., the dark object subtraction
method, there may be areas in which only a Rayleigh cor-
rection can be made or possibly, only a first-order correc-
tion based on climatology. This presents justification to
maintain some resistance to atmospheric influences in the
index itself, as the quality of the correction may vary
greatly and affect the integrity and quality of the VI global
data base.

Although the resulting new and improved indexes
markedly minimized soil or atmospheric influences, they
were not both reduced in a systematic, predictable man-
ner. Atmospheric noise was found to vary with the type
of soil background and soil noise was found to be a func-
tion of atmospheric condition. A feedback problem was
evident whereby the improvement of one form of noise
increased the other forms of noise. It may be necessary to
further explore and adjust the L factor in the SAVI equa-
tion and the gamma term in the SARVI/ARVI equations
to find ways to optimize normalization of soil and atmos-
pheric influences over a wide range of land cover situa-
tions. The combined soil-atmosphere interactive noise
may also be reduced by utilizing feedback mechanisms to
produce a more stable equation.

For temporal and dynamic VI analysis, other sources
of error include image to image misregistration, subpixel
clouds, and sun-target-sensor angular (bidirectional) con-
siderations [27].
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